Master limit notation, derivatives, integrals, and advanced mathematical expressions in LaTeX. Learn professional techniques for typesetting calculus and mathematical analysis.
Mathematical notation is the language of science, and LaTeX is its most eloquent translator. When it comes to expressing limits, derivatives, integrals, and other calculus concepts, LaTeX provides unmatched precision and beauty. This comprehensive guide will equip you with everything needed to typeset mathematical analysis professionally.
The fundamental building block of calculus starts with the limit:
% Inline limit
$\lim_{x \to a} f(x) = L$
% Display style limit
$$\lim_{x \to a} f(x) = L$$
% With displaystyle in inline mode
$\displaystyle\lim_{x \to a} f(x) = L$
% One-sided limits
\lim_{x \to a^+} f(x) % Right limit
\lim_{x \to a^-} f(x) % Left limit
% Limits at infinity
\lim_{x \to \infty} f(x)
\lim_{x \to -\infty} f(x)
% Limits with conditions
\lim_{\substack{x \to 0 \\ x > 0}} \frac{\sin x}{x}
% Multiple variable limits
\lim_{(x,y) \to (0,0)} \frac{xy}{x^2 + y^2}
% Supremum and infimum limits
\limsup_{n \to \infty} a_n
\liminf_{n \to \infty} a_n
% Directed limits
\varlimsup_{n \to \infty} a_n
\varliminf_{n \to \infty} a_n
% Projected limits
\varprojlim_{n} X_n
\varinjlim_{n} X_n
% First derivative notations
f'(x)
\frac{df}{dx}
\frac{d}{dx}f(x)
\dot{x} % Newton's notation
D_x f % Operator notation
% Higher order derivatives
f''(x)
f^{(n)}(x)
\frac{d^2f}{dx^2}
\frac{d^n f}{dx^n}
% Partial derivative
\frac{\partial f}{\partial x}
\partial_x f
f_x
% Mixed partial derivatives
\frac{\partial^2 f}{\partial x \partial y}
\frac{\partial^3 f}{\partial x^2 \partial y}
% Using upright d for differentials
\usepackage{physics}
\dv{f}{x} % Derivative
\pdv{f}{x} % Partial derivative
\dv[2]{f}{x} % Second derivative
\pdv{f}{x}{y} % Mixed partial
% Evaluated derivatives
\left.\frac{df}{dx}\right|_{x=a}
\frac{df}{dx}\bigg|_{x=a}
% With automatic sizing
\eval{\frac{df}{dx}}_{x=a} % Requires physics package
% Restricted derivatives
\left(\frac{\partial f}{\partial x}\right)_{y=\text{const}}
% Basic integrals
\int f(x) \, dx % Indefinite
\int_a^b f(x) \, dx % Definite
\int\limits_a^b f(x) \, dx % Limits above/below
% Multiple integrals
\iint_D f(x,y) \, dA
\iiint_V f(x,y,z) \, dV
\idotsint_{\Omega} f \, d\mu
% Line and surface integrals
\oint_C F \cdot dr % Closed line integral
\oiint_S F \cdot dS % Closed surface integral
% Contour integrals
\varoint_C f(z) \, dz
\sqint_C f(z) \, dz
% Principal value integrals
\dashint_a^b f(x) \, dx
\Xint-_a^b f(x) \, dx
% Average integral
\fint_a^b f(x) \, dx
% Simple sum
\sum_{i=1}^{n} a_i
% With limits on side (inline)
\sum\nolimits_{i=1}^{n} a_i
% Multiple indices
\sum_{\substack{i=1 \\ j=1}}^{n} a_{ij}
% Infinite series
\sum_{n=0}^{\infty} \frac{1}{n!}
% Products
\prod_{i=1}^{n} a_i
% Coproducts
\coprod_{i=1}^{n} a_i
% Direct sum/product
\bigoplus_{i=1}^{n} V_i
\bigotimes_{i=1}^{n} V_i
% Union and intersection
\bigcup_{i=1}^{n} A_i
\bigcap_{i=1}^{n} A_i
% Standard trig functions
\sin x, \cos x, \tan x
\sec x, \csc x, \cot x
% Inverse trig
\arcsin x, \arccos x, \arctan x
% Hyperbolic functions
\sinh x, \cosh x, \tanh x
\arcsinh x, \text{arccosh } x
% With proper spacing
\sin(2\pi x)
\cos^2 x % Squared
\sin^{-1} x % Inverse
% Natural logarithm
\ln x
\log x % Common log
\log_a x % Base a
\lg x % Binary log
% Exponentials
e^x
\exp(x)
\exp\left(\frac{-x^2}{2}\right)
% Limits involving e
\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = e
% Real and imaginary parts
\Re(z), \Im(z)
\real{z}, \imag{z}
% Conjugate and modulus
\bar{z}, \overline{z}
|z|, \lvert z \rvert, \abs{z}
% Argument
\arg(z)
\Arg(z) % Principal value
% Residue notation
\Res_{z=z_0} f(z)
\text{Res}(f, z_0)
% Cauchy principal value
\text{P.V.} \int_{-\infty}^{\infty} \frac{f(x)}{x} \, dx
% Branch cuts
\int_{\gamma} f(z) \, dz
% Sequence convergence
a_n \to L \text{ as } n \to \infty
\{a_n\} \to L
a_n \xrightarrow{n \to \infty} L
% Series convergence
\sum_{n=1}^{\infty} a_n \text{ converges}
\sum a_n < \infty
% Uniform convergence
f_n \rightrightarrows f
f_n \xrightarrow{\text{unif}} f
% Taylor series
f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^n
% Fourier series
f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos(nx) + b_n \sin(nx)\right]
% Power series
\sum_{n=0}^{\infty} c_n (x-a)^n
% Gradient, divergence, curl
\nabla f
\nabla \cdot \vec{F}
\nabla \times \vec{F}
% Laplacian
\nabla^2 f
\Delta f
% Directional derivative
\nabla_{\vec{v}} f
D_{\vec{v}} f
% Line integral
\int_C \vec{F} \cdot d\vec{r}
% Surface integral
\iint_S \vec{F} \cdot d\vec{S}
\iint_S \vec{F} \cdot \hat{n} \, dS
% Volume integral
\iiint_V \nabla \cdot \vec{F} \, dV
% Minimization/Maximization
\min_{x \in \mathbb{R}} f(x)
\max_{x \in S} g(x)
\arg\min_{x} f(x)
\arg\max_{x} g(x)
% Subject to constraints
\begin{align}
\min_{x,y} \quad & f(x,y) \\
\text{s.t.} \quad & g(x,y) \leq 0 \\
& h(x,y) = 0
\end{align}
% Supremum and infimum
\sup_{x \in A} f(x)
\inf_{x \in A} f(x)
% Norms
\|x\|
\|x\|_2
\|x\|_{\infty}
\|f\|_{L^p}
% Inner products
\langle x, y \rangle
\langle x | y \rangle % Dirac notation
(x, y)
% Linear operators
\mathcal{L}[f]
\hat{H}\psi
% Functional derivatives
\frac{\delta F}{\delta f}
\frac{\delta^2 F}{\delta f^2}
% Correct spacing
\int f(x) \, dx % Thin space before dx
\sin x \cos x % Automatic spacing
a \cdot b % Centered dot
% Manual spacing
\! % Negative thin space
\, % Thin space
\: % Medium space
\; % Thick space
\quad % Em space
\qquad % 2em space
% Multi-line limits
\lim_{\substack{n \to \infty \\ n \text{ even}}} a_n
% Breaking long equations
\begin{multline}
f(x) = a_0 + a_1 x + a_2 x^2 + \cdots \\
+ a_{n-1} x^{n-1} + a_n x^n
\end{multline}
When working with mathematical content in inscrive.io:
% Define consistent notation
\newcommand{\limit}[2]{\lim_{#1 \to #2}}
\newcommand{\derivative}[2]{\frac{d#1}{d#2}}
\newcommand{\integral}[4]{\int_{#1}^{#2} #3 \, d#4}
% Usage
\limit{x}{0} f(x)
\derivative{y}{x}
\integral{0}{1}{f(x)}{x}
% Wrong: Limits on side in display mode
$$\lim\nolimits_{x \to 0} f(x)$$
% Correct: Let LaTeX decide
$$\lim_{x \to 0} f(x)$$
% Or force placement
$$\lim\limits_{x \to 0} f(x)$$
% Common mistake
\frac{df}{dx}(x) % Looks cluttered
% Better
\frac{df}{dx} \bigg|_{x=a} % At a point
\frac{d}{dx}[f(x)] % Of an expression
% Define new operators
\DeclareMathOperator{\sgn}{sgn}
\DeclareMathOperator{\curl}{curl}
\DeclareMathOperator{\div}{div}
% With limits
\DeclareMathOperator*{\argmax}{arg\,max}
\DeclareMathOperator*{\argmin}{arg\,min}
% Usage
\sgn(x)
\argmax_{x \in \mathbb{R}} f(x)
% Number only referenced equations
\usepackage{mathtools}
\mathtoolsset{showonlyrefs}
% Custom equation tags
\begin{equation}\tag{Euler}
e^{i\pi} + 1 = 0
\end{equation}
% Precompile common expressions
\newcommand{\limzero}[1]{\lim_{#1 \to 0}}
\newcommand{\liminfty}[1]{\lim_{#1 \to \infty}}
% Use text mode when appropriate
\text{if } x > 0 % Not \mathrm{if} x > 0
Mastering limits and mathematical notation in LaTeX opens doors to professional mathematical communication. From simple limits to complex functional analysis, LaTeX provides the tools to express mathematical ideas with precision and elegance.
Modern platforms like inscrive.io enhance this capability with real-time collaboration, making it easier than ever to work on mathematical documents with colleagues worldwide. The combination of LaTeX’s powerful notation and collaborative editing creates an ideal environment for mathematical writing.
Remember: good mathematical typography isn’t just about correctness—it’s about clarity and communication. Use these tools wisely to make your mathematical writing both beautiful and comprehensible.
Ready to elevate your mathematical writing? Try inscrive.io for collaborative LaTeX editing with instant mathematical preview, smart symbol suggestions, and AI-powered formatting assistance. Experience mathematics as it was meant to be written.
Master limit notation, derivatives, integrals, and advanced mathematical expressions in LaTeX. Learn professional techniques for typesetting calculus and mathematical analysis.
Read in 19 minutesLearn professional alignment techniques in LaTeX for text, equations, and complex mathematical expressions. Master the align environment and advanced formatting with practical examples.
Read in 20 minutesComprehensive comparison of online LaTeX editors including inscrive.io, Overleaf, and alternatives. Discover features, pricing, collaboration tools, and GDPR compliance for academic writing.
Read in 23 minutesMaster word counting in LaTeX documents with texcount and other tools. Learn accurate counting methods for theses, papers, and reports including handling of citations, captions, and mathematics.
Read in 17 minutesStay up to date with the roadmap progress, announcements and exclusive discounts feel free to sign up with your email.
We care about the protection of your data. Read our Privacy Policy.